Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
Indoor and Built Environment ; 32(2):408-424, 2023.
Article Dans Anglais | Scopus | ID: covidwho-2240394

Résumé

COVID-19 has alerted us about the need to quantify the effect of different environmental factors on the concentration distribution of bioaerosols. An experimental investigation was carried out to evaluate the effect of environmental factors, including air temperature, relative humidity, airflow speed and ultraviolet (UV) radiation, on the potential dispersion risk of bioaerosols in an enclosed space by tracking the Serratia marcescens as the tiny organisms. Research results indicated that the concentration of bioaerosols is the highest at the indoor air temperature of 25°C among the tested conditions (20°C, 25°C, 30°C and 35°C). The particle size of bioaerosols can be influenced by temperature, resulting in changes in the amount of settling. Increasing relative humidity from 50% to 80% and airflow speed from 1.5 m/s to 2.2 m/s have a negative impact on the dispersion of bioaerosols as the amount of particle settlement increases accordingly. As for the UV radiation parameters, a better disinfection efficiency was achieved at a radiation distance of 40 cm in the tested range of 20–50 cm and a radiation exposure time of 30 min in the tested range of 10–50 min. This study delivered novel data for the concentration distribution of bioaerosol under different environmental factors for creating a safe indoor environment. © The Author(s) 2022.

2.
Applied Sciences ; 12(16):8025, 2022.
Article Dans Anglais | ProQuest Central | ID: covidwho-2023094

Résumé

Knowing particle penetration efficiencies and concentration distributions in an inlet channel of a sampling device is beneficial for the robust assessment, attribution and quantification of nanoparticles produced by various activities. The aim of this research is to evaluate the effect of the presence or absence of a conical column inside a hollow tapered cylinder on the nanoparticle penetration efficiency and its outlet concentration profile for different flow rates. The particle penetration characteristics of various sizes from 3 nm to 20 nm were numerically investigated by using the flow field and convection diffusion equations within the hollow tapered cylinder. Firstly, the proposed model of the nanoparticle penetration efficiency for the hollow tapered cylinder with the conical column is validated with the experimental data in the literature. Then, the results indicate that the concentration at the outlet of the hollow tapered cylinder with the conical column exhibits annular profiles for 3 nm and 5 nm nanoparticles at a flow rate of 2.0 L/min, which is found to avoid centralizing the particles in the exit area. In addition, the penetration efficiency of nanoparticles can be improved by increasing flow rates or removing the conical column inside the hollow tapered cylinder. Finally, the ring-shaped concentration profile of the 10 nm nanoparticles at the outlet of the hollow conical cylinder with the conical column becomes more obvious as the flow rate decreases. This study interprets and quantitatively decides the nanoparticle penetration efficiency and its exit concentration profile for the hollow tapered cylinder with or without the conical column. Therefore, the results can provide some useful design references for the transport of nanoparticles in the hollow tapered cylinder.

3.
Aerosol and Air Quality Research ; 21(8), 2021.
Article Dans Anglais | ProQuest Central | ID: covidwho-1771441

Résumé

In closed buses, the spread of droplets with viruses/bacteria may cause the spread of respiratory infectious diseases. Discrete phase modeling is used to simulate the diffusion characteristics and concentration distribution of droplets at different temperatures and different exhalation positions by ANSYS FLUENT software. The integral concentration of droplets at different locations can be quantified, which leads to identification of low-risk areas and high-risk areas in the bus. Results show that a higher outdoor temperature leads to lower droplets’ diffusion speed and longer time until the droplets reach the driver. In addition, based on the integral concentration of droplets at the seats, regardless of whether a passenger exhales droplets in the front row of the bus, the position of the rear door or the last row of the bus, the seats in the last row of the bus away from the door belong to the low-risk area. In contrast, the seats near the door and the middle seat in the bus are higher risk areas. Consequently, this study proposed sitting on a seat in the low-risk area as a means to reduce the risk of passengers. Moreover, safety protection facilities around the driver should be modified to improve the isolation of the upper area of the driver’s location, so as to effectively prevent the droplet diffusion towards the driver, thereby effectively reducing the driver’s risk of infection.

SÉLECTION CITATIONS
Détails de la recherche